Geographical Skills:

Paper 3

A: Cartographic Skills

 B: Graphical SkillsC: Statistical Skills

Paper 3: Revision Geographical Skills

Exam	Topics	Length of Exam	Value	Exam Date
Paper 1: Living with the Physical Environment	Section A The Challenge of Natural Hazards Question 1: The Challenge of Natural Hazards Section B The Living World Question 2: The Living World Section C Physical Landscapes in the UK Question 3: Coastal Landscapes in the UK and Question 4: River Landscapes in the UK	90 minutes	35\%	21^{st} May 2019 PM
Paper 2: Challenges in the Human Environment	Section A Urban issues and challenges Question 1: Urban issues and challenges Section B The changing economic world Question 2: The changing economic world Section C: The challenge of resource management. Question 3: The challenge of resource management and Question 6: Energy	90 minutes	35\%	$\begin{aligned} & 5^{\text {th }} \text { June } \\ & 2019 \\ & \text { PM } \end{aligned}$
Paper 3: Geographical applications	Section A: Issue evaluation Section B: Fieldwork	75 minutes	30\%	$\begin{aligned} & 13^{\text {th }} \\ & \text { June } \\ & 2019 \\ & \text { PM } \end{aligned}$

Did you know?

10% of the marks across all three papers is allocated to the assessment of maths and statistical skills.
15% of the total marks is allocated to assessment of fieldwork (including interpretation of results).

There is really useful section on BBC Bitesize about Geographical Skills:

A: Cartographic Skills

Atlas maps

Latitude and longitude

Latitude and longitude are measured in degrees $\left({ }^{\circ}\right)$. Each degree is subdivided into 60 minutes ('). So the location of Tewkesbury is expressed as:
$51^{\circ} 59^{\prime} N 2^{\circ} 9^{\prime} W$

Lines of latitude and longitude are used to locate places accurately on the Earth's surface.

Lines of latitude

These imaginary lines run parallel to the equator, from e \qquad to w \qquad . They divide the world into the n \qquad and s \qquad hemisphere. They are parallel, but they are not the same length and get s \qquad as they move away from the equator, reaching 90° at the poles.

	Lines
How many important lines of latitude can you name?	longi
	tude
	Lines

Using atlas maps

Atlas maps show a range of information, such as:

- Countries and regions, settlements and political borders.
- Physical features, such as relief.
- Thematic maps, such as climate and biomes.
- Global issues, such as global warming.

Map projections: There are different ways of projecting the world onto a map. The Mercator projection is probably the most familiar, but the Peter's projection more realistically represents the true size and position of continents.

GCSE Exam question

Question 1 Issue evaluation

Study Figure 1, a map showing the location of ten of the world's top ten megacities (2014).

1. On Figure 1, add the names of the two megacities to the correct boxes.

Use the information in the table below.

Megacity	Latitude	Longitude
Lagos	$6^{\circ} \mathrm{N}$	$3^{\circ} \mathrm{E}$
São Paulo	$24^{\circ} \mathrm{S}$	$46^{\circ} \mathrm{W}$

2. Which one of the following is the correct latitude and longitude for Jakarta?

Shade one circle only.

A	$21^{\circ} \mathrm{N}$	$52^{\circ} \mathrm{E}$	\square
B	$30^{\circ} \mathrm{S}$	$157^{\circ} \mathrm{E}$	\square
C	$6^{\circ} \mathrm{S}$	$106^{\circ} \mathrm{E}$	\square
D	$33^{\circ} \mathrm{N}$	$75^{\circ} \mathrm{E}$	

Identify patterns or distributions on maps

When asked to describe patterns or distributions on maps, think about PEA!

Pattern
Example

Anomaly

1. Pattern - Give an overview. Is the pattern even or uneven? Consider the spread.
2. Examples - State where things are that support your pattern are - be specific.
3. Anomalies - Are there any oddities or gaps? These are anomalies and you need to identify where they are.

GCSE Exam Question

Study Figure 4, which shows the distribution of major earthquakes.

Figure 4
Describe the distribution of earthquakes shown in figure 4.
\qquad

Ordnance Survey Maps

Maps are produced at different scales. The scale of the map is how much smaller the map is than the area it represents.

Landranger Maps

1:50 000 scale means 2 cm on the map means 1 km on the ground.

It covers a larger area, but shows less detail.

Explorer Maps

1:25 000 scale means 4 cm on the map means 1 km on the ground.

It covers a smaller area, but shows more detail e.g. footpaths.

Grid references

Ordnance Survey maps are covered in a series of blue gridlines. These gridlines can be used to pinpoint locations through a unique number known as a grid r \qquad .

A four-figure grid reference is a handy way of identifying any s \qquad on a map. Four figure references are useful if you're trying to describe the position of a large feature such as a forest or settlement.

Grid references are easy, as long as you remember that you always go along the corridor before you go up the stairs.

> Write down the four figure grid references for the following:

1. Picnic site \qquad
2. Church with a tower \qquad
3. Youth hostel \qquad
4. Campsite \qquad

Grid references continued...

A four-figure reference on an Ordnance Survey map equals an area on the ground of one square k \qquad .

One kilometre is quite a large area. To be more accurate we need to use a six-figure grid reference. This pinpoints a place exactly to within 100 metr

Six-figure grid references

 In your head, you should be able to divide all sides of the square into ten equal sections. By doing this, you can pinpoint locations within the square - these are called six-figure grid references.
> Write down the six figure grid references for the following:

1. Picnic site \qquad
2. Church with a tower \qquad
3. Youth hostel \qquad
4. Campsite \qquad
5. Castle \qquad
6. Car Park \qquad

Symbols

When drawing a map, it is important to include as much information as possible. However, adding a lot of detail can make a map confusing, so symbols (images, abbreviations and letters) are used to represent the main items.

The exam board is expecting you to know the main symbols used by the Ordnance Survey. However, there is no need to learn the meaning of every symbol, as a map extract will always be accompanied by a key.

However, it is important to at least learn some of the basic symbols so that map reading becomes easier.

- Green bits mean woodland (various types).
- Blue areas are either water, tourist information or motorways.
- Roads are colour coded. Blue= motorways, red= ' A ' roads, orange/ brown = ' B ' roads, yellow= local roads and white=tracks.
- Contours are thin brown lines that join areas of equal height at 10 metre intervals e.g. $10 \mathrm{~m}, 20 \mathrm{~m}$ and 30 m above sea level.
- To help with height black dots with figures next to them are written on maps.

Draw the correct symbol in the box using the key at the back of the AQA textbook p. 352 .

Church with tower	Cemetery	Quarry
Main Road	Marsh	Rivers
Motorway	Coniferous Wood	Windmill
Footpath	Camp Site	Mixed Woodland
Parking	Radio/ TV Mast	Non-coniferous woodland
Information Centre		

Scale

The scale of a map allows a reader to calculate the size, height and dimensions of the features shown on the map, as well as d \qquad between different points.

The scale on a map is the ratio between real life distances and how many times it has been shrunk to fit it on the map.

The maps in your exam will have a scale of 1:50 000 (where $1 \mathrm{~cm}=50,000 \mathrm{~cm}$ on the ground or 500 m or 0.5 km) or a scale of 1:25 000 (where $1 \mathrm{~cm}=25,000 \mathrm{~cm}$ on the ground, or 250 m or 0.25 km).

Remember!

1:25 $000 \mathrm{map} 1 \mathrm{~km}=4 \mathrm{~cm}$ on the map.
1:50 $000 \mathrm{map} 1 \mathrm{~km}=2 \mathrm{~cm}$ on the map.

Straight line distances

Straight-line distance
1 Use a ruler to measure the distance between
two places on the map, in centimetres.

2 Measure out the distance on the map's linear scale to discover the distance on the ground in kilometres.
$0, \ldots 1, \ldots, 3 \mathrm{~km}$

4 cm on the map $=2.0 \mathrm{~km}$ on the ground

Straight line distances between locations can be calculated as follows:
> Simply place your ruler over both points and measure the distance in-between in cm .
> Convert into kilometres using the scale line.
> Or multiply your answer by 0.5 (1:50 000 map) or by 0.25 (1: 25000 map).

Practice question:

If the distance between a church and a campsite is 16 cm , what would the real-life distance be on a:
a) 1:50 000 scale map \qquad
b) 1:25 000 scale map \qquad

Curved line distances

Measuring the distance along a curved or winding route such as a road or river is more complicated. This can be done by either using a piece of string or by splitting the road or river into straight sections. The easiest way to measure the distance along a winding route is by using a piece of paper or string.

Curved-line distance

1 Place the straight edge of a piece of paper along the route to be measured. Mark the start with the letter S. Look along the paper and mark off the point where the route moves away from the straight edge.

$$
3
$$ he end of the route. Mark this finishing point with the letter F.

3 Place the edge of the marked paper alongside the linear scale on the map and convert the total length to kilometres. Remember to always give the units when writing your answer!

$>$ Another method is to take a piece of string and place one end at the starting point.
> Carefully lay the string along the road or path, following the curves as closely as you can.
$>$ When you reach the end mark it on your string with a pen.
$>$ Now straighten the string along the scale line to work out the real-life distance.

Remember!

Take a ruler and a piece of paper / string into the exam to help you use the scale!

Compass direction

In the exam you will be expected to know the 8-point compass, shown below:

> Compass Points

$>$ The top of an OS map is always north.
$>$ Remember to give the direction from one point to another.

Can you think of a rhyme to help you remember the points of the compass?

Practice questions

From the black star draw:

1. A green circle 3 squares north.
2. A blue square 1 squares south.
3. A yellow triangle 3 squares south east.
4. A pink heart 1 square north west.
5. A brown circle 3 squares east.
6. An orange square 5 squares west.
7. A purple heart 3 squares south west.
8. A blue triangle 2 squares north.

Contours, spot heights and gradients

Relief is a term, geographers use to describe the shape and height of the land. OS maps use two systems to illustrate relief, spot heights and contour lines.

Contour lines

A contour is a line drawn on a map that joins points of equal height above sea level in 10 metre intervals. Therefore, every point on a 50 metre contour line is 50 metres above sea level. Contours on OS maps are coloured light brown. The diagram below shows the link between the shape of a hill and the contours representing it on a map.
$>$ Lines that are close together show a s \qquad slope.
> Lines that are far apart show slopes that are g \qquad .

Contour lines indicate the steepness of a slope

a gentle slope

a steep slope

Spot heights

Spot heights are usually indicated by black dots with a height above sea level written alongside.

Ordnance Survey practice questions

Answer the following questions using the 1: 50000 OS map extract on page 105 of the AQA textbook of the Swanage coast. Remember! There is a key for the symbols used on page 352.

1. Look at photograph B on p104 and the map extract. Which compass direction was the camera facing?
2. Give the four figure grid reference of the following features:
a) Parking at Shell Bay
b) Studland Heath
c) Lighthouse off Studland Bay
\qquad
d) Information Centre at Swanage
e) Whitecliff Farm
\qquad
\qquad
\qquad
3. Give the six figure grid reference of the following features:
a) Triangulation pillar in 0177
b) Town Hall (TH) in 0378 \qquad
c) Mast in 0181
d) Public convenience in 0383
e) Railway station in 0278
\qquad
\qquad
\qquad
4. Using the scale at the bottom of the $\operatorname{map}(2 \mathrm{~cm}=1 \mathrm{~km})$ work out the straight-line distance between:
a) Ballard Point and Peveril Point
b) Old Harry and South Haven Point
\qquad
c) Anvil Point and Redend Point
\qquad
d) Peveril Point and Anvil Point
e) The Pinnacles and Old Harry
\qquad
\qquad
\qquad
5. What is the height of the land at 013776? \qquad
6. Describe the height and shape of the land at Ballard Down.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
7. This area is popular with tourists. Write down or draw all the symbols on the map associated with tourism.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Drawing cross-sections

\rightarrow A cross-section is an imaginary 'slice' through a landscape.
$>$ It shows the changes in relief along a chosen line.
$>$ It is a graph which shows distance along the x-axis and height on the y-axis.
$>$ When drawing a cross-section, the scale used on both axes must be chosen carefully to show a true representation of the landscape.

- Place the straight edge of a piece of paper along the chosen section.
- Mark the start and finish of the section.
- Mark contours along the paper.
- Draw the axes of a graph and chose an appropriate vertical scale.
- Lay the piece of paper along the horizontal axis.
- Mark each contour value on the graph paper.
- Join the points freehand with a curved line.

Exam Practice - Using the 1: 50000 OS map extract of the River Tees near Darlington on page 123 of the AQA GCSE geography textbook, draw a cross-section from 360110 to 380130.

Interpreting the physical and human landscape - Colour code which features are human and which are physical on the spider diagram. Don't forget to add a key.

1. Relief - the height and shape of the land. To describe the land accurately you need to use actual figures taken from spot heights or contour lines and include the units e.g. metres.
2. Drainage - the presence of water and where it flows. To describe the drainage, you need to comment on the direction they are flowing (highland to lowland), the drainage density (the total length of the rivers), the pattern of the rivers (see below) and any evidence of human activity (straightening the channel/building embankments).

3. Communication - these can include many different types of transport, such as roads, railways, footpaths, ferries, airports, cycleways. To describe communication networks, you need to give such as length of feature, orientation (compass direction), patterns and density e.g. ring road. Roads, canals and railways often follow flat land, footpaths often follow river valleys.

4. Land Use - this is the way land is used or has been changed by people. To describe land use you need to use the map key and give specific examples to support your statements. Examples of land use which can be seen on OS map include: -

- Woodland (coniferous or non-coniferous)
- Coastal deposits (marsh)
- Urban areas (housing, settlement)
- Fields (white on OS maps)
- Quarries
- Industrial areas (Wks)
- Tourist sites (blue symbols)
- Recreation

Practice questions

Using the OS 1:50 000 map extract of the River Tees near Darlington answer the following questions.
a) Describe the relief of the land in 3311 .
b) Describe the drainage of Staindale Beck in 3707.
\qquad
c) Describe of the pattern of settlement in 3810 (High Worsall).
\qquad
d) Describe the route of the Teasdale Way footpath.
\qquad
e) Describe all the types of land use in 3808.
\qquad
\qquad

Drawing sketch maps from OS maps

A sketch map is drawn to produce a simplified version of an OS map. It should focus on just a few key features, such as patterns of roads or rivers. Without lots of other information.
$>$ Draw a frame using the same scale as the map.
$>$ Divide the frame into grid squares. Write the numbers around the frame.
$>$ Draw the features you need in pencil.
$>$ Label and annotate your sketch as necessary.
$>$ Add a scale, north point and title.

GCSE Exam Question

Look at the OS map extract on page 123 of the AQA textbook. Draw a sketch map of grid squares 3407, 3408, 3507 and 3508 on the grid below.
a) Draw the course of the river and the 20 m contour line that runs alongside the river on either side. Draw any levees that have formed either side of the river.
[3 marks]
b) Carefully label the following:

- the meander
- the floodplain
- the direction of river flow
- levees

3407
c) Explain how the course of the meander may change in the future?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Drawing sketches from photographs

In a similar way to a drawing from a sketch map, a drawing from a photograph needs to identify the main features only.
$>$ Draw a frame that is the same shape as the photograph.
$>$ Draw one or two major lines for guidance e.g. a hilltop or river.
$>$ Decide which features you need to show and concentrate on those features.
$>$ Labels (single words or phrases) and annotations (more detailed descriptions) should always be added.

GCSE Exam Question

3.1 Look at photograph C on page 104 of the AQA textbook.

Draw a labelled sketch of main coastal features in the box below. Label the following landforms on your sketch:

- Cave
- Stack
- Wave-cut platform
[4 marks]
3.2 Complete the following paragraph about how arches are formed.

Chose the correct words from the list below.

> Cave faults arch

Lines of weakness in a headland, such as \qquad are eroded by the energy from waves.

The rock wears away along a line of weakness to form a \qquad

Over time, erosion may lead to the cave breaking through the headland to form an

B: Graphical Skills

Do you know your graphs?

In the exam you will be expected to read and interpret information in a variety of ways, including graphs. When describing what a graph a shows, remember:

When asked to describe patterns or distributions on graphs, think about PEA!

Pattern

Example

Anomaly

This is a very important skill. Use this acronym to help you write a quality description.

1. Pattern-Give an overview. Describe the overall trends and patterns.
2. Examples - Give some evidence to support your description. Be specific - quote figures.
3. Anomalies - Are there any oddities in the data/trends? These are anomalies.

1. Bar graphs

A bar chart is made up of columns of the same width. The height of the bar is proportional to the quantity represented. The vertical scale should be used for \% or absolute data. The horizontal scale axis should be used for discrete or categorical data. All bar charts should begin at zero on the vertical axis.

Advantages of bar graphs	Disadvantages of bar graphs
- Commonly used so easily	- Can be over complicated by
understood.	
-Show reluding too many multiple bars. effectively.	
- As the scale passes through zero positive and negative values can be presented on one graph.	

2. Histograms

A histogram also uses bars with no gaps between them. It represents continuous data, for example over time. The values may all be part of a single sample and, the bars are effectively connected, a single colour or type of shading is used. There should be equal class intervals between the bars.

Advantages of histograms

- It is easy to see trends over time as the bars are together.

Disadvantages of histograms

- It can be difficult to read specific data as the bars are so close together.

3. Divided bar graph

It is possible to subdivide individual bars in order to show multiple data; this is called a divided bar graph. This type graph is often used to show percentages; it is a good alternative to a pie chart.

Advantages of divided bar	Disadvantages of divided bar		
• It is easy to see the share of data sets as			
categories are colour-coded.		\quad	• It can be difficult to read specific data as some
:---			
of the categories are small.			

4. Pie chart

A chart is a circle divided into a segment; it shows the proportions of a total. Percentage figures are written inside or alongside the segments to interpret the diagram.

Remember!

The area of the circle is divided into segments according to the share of the total value represented by that segment.

- $100 \%=360^{\circ}$
- To convert percentages to degrees, multiply the value by 3.6
- Use the formula X total $\times 360$

Tips

- Start from 12 O'clock position
- Draw smallest segment first

Advantages of pie charts	Disadvantages of pie charts
- A pie chart is a good way of showing how a total is divided up. - Visually effective - easy to see the relative contribution of individual segments to the whole. - Can be used on a map to give extra infomation	- Hard to assess \% accurately from the pie chart, especially if the individual slices are small. - Comparing one pie chart with another at anything beyond a superficial level is difficult. - Small segments less than 5 degrees are difficult to draw.

5. Line graph

A simple line graph shows how one variable changes against another over time. The variables must have something to do with each other. Time is shown on the horizontal axis and must have equal spacing. These graphs are appropriate when you want to show absolute changes in data over time.

Advantages of line graph

Disadvantages of line graph

- The scale needs to be carefully considered to show trends accurately.
- Works better with smaller sets of data.

6. Pictograms

A pictogram uses a pictorial symbols or icon instead of a bar. All icons must be the same size but fractions of icons can be used to represent values in between e.g. half.

March 2015 weather

Advantages of pictogram

- Represents data effectively.
- A visual technique, so easy to interpret.

Disadvantages of pictogram

- Can be difficult to draw as all icons must be the same size.
- It can be difficult to extract precise data from the diagram.

GCSE Exam Question

Study Figure 1, a graph showing changes in the amount of carbon dioxide $\left(\mathrm{CO}_{2}\right)$ in the atmosphere.

Figure 1

0	1	1
Describe the change in the amount of carbon dioxide in the atmosphere shown in		

\qquad
\qquad
\qquad
\qquad

United Kingdom energy mix

Study Figure 1, 'Energy in the United Kingdom', in the resource booklet.

0	1	1
1	Describe the changing pattern of total energy consumption in the UK between	

Study Figure 8, which shows how the forested regions of the world changed between 2005 and 2009.

Figure 8

| 0 | 2 |
| :--- | :--- |, \(\begin{aligned} \& 5

\& Which region of the world had the greatest rate of deforestation between 2005 and\end{aligned}\) 2009 ? than the world average rate of deforestation between 2005 and 2009 .
$0 \mid 4 .-3$ Study Flgure 5 , two sets of data collected by students who were carring out a geographical enquiry about trafic problems in a town centre.

FIgure 5

Car ownershlp in the town	
Date	Number of Cars
1950	3127
1960	4240
1970	4912
1960	5727
1990	6520
2000	7983
2010	8920

How people travelled to the town centre (aample of 100 people)	
Car	62
Walk	17
Bus	15
Motorcycle	3
Cycle	3

The following four methods were considered for presenting the data shown in Figure 5.

A Ple chart
B LIne graph
C Proportional symbol map
D Flow llne map

Which method ($\mathrm{A}, \mathrm{B}, \mathrm{C}$ or D) would be most sultable for presenting each set of data?

Data ahown in Figure 5	Presentation method
Car ownershlp in the town	
How people travelled to the town centre	

7. Population Pyramids

A population pyramid is a type of histogram showing the proportions of a population in different age and gender categories. It is usually shaded; males are the proportion of males are shaded blue and females are red/pink.
Population pyramids show the structure of a population and the shape of the pyramid provides valuable information for the future provision of health care, schooling and housing.

Few people live into their old age so life expectancy is low.

Steep sides 'pyramid shape' indicates high death.

A wide base indicates a high birth rate.

Want to know more?

Look an annotated population pyramid for the UK on page 339 of the AQA textbook
There is more information about population pyramids on pages 200-201 in 'The Deve opm

8. Scatter graphs

A scatter graph shows the relationship between two variables by the distribution of dots. It is usual that the dependent variable is placed on the y-axis (Vertical), and the independent variable on the x-axis. Dots are plotted on the graph using the two sets of data as coordinates. The arrangement of dots can then be examined to see if there is a positive relationship (as one variable increases so does the other), a negative relationship (as one variable increases the other decreases) or no relationship (there is no recognisable pattern to the distribution of dots).

A best fit line is drawn that comes close to as many points on the graph as possible.

There are three possible relationships

- Shows a trend in the data relationship
- Retains exact data values and sample size
- Hard to visualize results in large data sets
- Flat trend line gives inconclusive results
- Data on both axes should be continuous
- Shows minimum/maximum and outliers
- Positioning the line of best fit is subjective

9. Choropleth maps

A choropleth map uses different colours or different densities of the same colour to show the distribution of data categories.

Advantages of choropleth maps	Disadvantages of choropleth maps
Different colours or shading make it easy to interpret.	There may be significant variations at a local level e.g. within a region.
Data is presented by country/region/county which makes it easy to see patterns and analyse.	A choropleth map suggests there are abrupt changes in boundaries, which is not usually the case.
The data can be grouped so that is easy to see the spread of values.	The intervals for the values need to be chosen carefully.
Give a good indication of how changes can happen over space.	

10. Isoline maps

An isoline uses lines of equal value to show patterns ('iso' means 'equal'). Isoline maps can be tricky to draw but are a good way of showing patterns when put onto a base map.

One type of isolines you already know is contour lines on a map. They show areas of same height.

Some of the most common types of isoline maps show weather and climate. The map opposite joins points of equal pressure as an isoline.

11. Desire line map

A desire line map shows the movement of people or goods between places. They may also be proportional and show distances between places and show the spatial density of the data represented. They do not show the exact path of movement, however.

When drawing a desire line map, each line should be positioned accurately to show where it starts (source) and ends (destination).

12. Flow line maps

This technique indicates the direction and volume of movement, with the thickness of the line representing the volume. They show the movement between places by connecting the source with the destination

Flow lines can be drawn on a base map but, but an appropriate scale is needed to avoid flow lines crossing over each other.

13. Dot maps

Dots are used to represent a particular value of number and are located accurately on a map. The number and density of dots represents the data but it can be difficult to interpret accurately.

14. Proportional symbols

Proportional symbols are a useful way to show data on a base map where spatial variations can be seen.

The area of the circle needs to be proportional to the data.

How much hydroelectricity and wind energy could be made in Brazil?
\qquad
\qquad
\qquad
\qquad

B Potential sites for global renewable energy production

Study Figure 3, a choropleth map showing the percentage of the urban population living in slums in African countries (2010 estimate).

Figure 3

| 0 | 2 |
| :--- | :--- | Complete Figure 3 using the information below.

Estimated percentage (\%) of urban population living in slums:

Tanzania - 80\%

| 0 | 2 | 2 |
| :--- | :--- | :--- | What is the estimated percentage of urban population living in slums in Ethiopia? Shade one circle only.

A Above 90\%

B 81-90\%
C $70-80 \%$

D Below 70\%

Figure $\mathbf{8}$ is an isoline map of pedestrian flow in part of London using results from a 5 minute pedestrian count.

Figure 8

0	$\mathbf{4}$	$\mathbf{2}$ Complete the isoline for 100 pedestrians shown on Figure 8.

0	4	3

[2 marks]
\qquad
\qquad
\qquad
\qquad

0	4	5	Explain why the pattern of pedestrian flow shown in Figure 8 may not be accurate.

[2 marks]
\qquad
\qquad
\qquad
\qquad

C: Statistical Skills

Geographers frequently use numbers and data sets. Statistics are an important part of any geographical investigation as they help to identify patterns and trends.

Remember!

In the exam you may be asked to spot weaknesses in the presentation of selected data. This might involve identifying incorrect labelling of axes or inaccurate interpretation of trends.

1. Measures of central tendency

Central tendency is a description of the 'average' within a data set. There are three ways of measuring the central tendency:

- Mean
- Median
- Mode

Mean

Calculated by adding up all the values in a data set and dividing by the number of values.

Median

This is the central point value in a ranked set of data. If there is an even number of values, the median lies halfway between the two central values.

Median

Order the set of numbers, the median is the middle number

$$
9,3,1,8,3,6
$$

$$
1,3,3,6,8,9
$$

The median is 4.5

Mode

This is the most common value in a data set. If there are no repeated values, there is no mode.

Mode

The most common number

$$
9,3,1,8,3,6
$$

The mode is 3

3. Measures of spread

Central tendency is useful but they do not indicate how the values in a data set are spread around the average.
The range is the difference between the highest and lowest values.

Range

The difference between the highest number and lowest number

$$
\begin{gathered}
9,3,1,8,3,6 \\
9-1=8 \\
\text { The range is } 8
\end{gathered}
$$

4. Quartiles and inter-quartile range

Dispersion graphs are particularly useful because they show the range of data and are useful to make comparisons between data, such as sites. The inter-quartile range is a more accurate way of showing the spread of data because it does not include the extremities.

How to calculate the inter-quartile range

> The IQR is calculated by writing the all the data in rank order from lowest to highest or plotting it on a dispersion graph.
> The values are then divided into four equal groups or quartiles.
> The number of values is known as n.
> The upper quartile (UQ) is calculated as follows:-

$$
(n+1)
$$

4
> The lower quartile range (LQ) is calculated as follows:-

$$
3(n+1)
$$

4

5. Percentage change

Percentage increase was 393,333\%
Percentage change is a good way to describe changes over time or compare sets of data.

How to calculate the percentage change.
$>$ Work out the difference between the two numbers (NEW number minus ORIGINAL number).
$>$ Divide the result (the INCREASE) by the ORIGINAL number.
$>$ Multiply the answer by 100 to give a percentage.
$>$ If it is a positive number there is an increase, if the answer is a negative number there is a decrease.

6. Describing relationships in bivariate data

The term bivariate data simply means the data for two variables that are related. Bivariate data is usually plotted as a scattergraph. The dependent variable is plotted along the side (\boldsymbol{y} axis) and the independent variable is plotted along the bottom (x axis).

Example of bivariate data

$>$ GDP and energy consumption is an example of bivariate data.
$>$ We can expect the amount of energy consumed to increase as the wealth of a country (GDP) increases. So, energy consumption is dependent on GDP.
$>$ Therefore, energy consumption can be said to be the dependent variable (\boldsymbol{y} axis) and GNP the independent variable.

GCSE Exam Question

Question 2 The changing economic world

Study Figure 5, a table showing Gross National Income (GNI \$) and Infant Mortality for a number of South American countries.

Figure 5

Country	Gross National Income 2013 (\$ per person)	Infant Mortality 2013 (per 1000 births)
Argentina	17250	12
Brazil	11690	12
Bolivia	2550	31
Colombia	7590	15
Chile	15230	7
Ecuador	5760	19
Guyana	3750	30
Paraguay	4010	19
Peru	6270	13
Suriname	9370	20
Uruguay	15180	10
Venezuela	12550	13

Study Figure 6, a scattergraph showing the information in Figure 5.

| 0 | 2 |
| :--- | :--- | $\mathbf{2}$ Complete the scattergraph by plotting the data for Uruguay.

GNI: 15180
Infant mortality: 10

| 0 | 2 | 3 | Draw a line of best fit (trend line) on the scattergraph to show the relationship between |
| :--- | :--- | :--- | :--- | GNI and infant mortality.

| 0 | 2 | .4 | Suggest one reason for the relationship between GNI and infant mortality shown on |
| :--- | :--- | :--- | :--- | the scattergraph.

0	2	5
5	Using the data in Figure 5, calculate the average infant mortality rate for the twelve	

Show your working in the space below.
\qquad
\qquad
\qquad

As part of an enquiry collecting primary physical geography data, a student measured pebble sizes at one location on a beach.

The results are shown in Figure 9.
Figure 9

Pebble size is measured along the long axis.

Sample	Pebble size in centimetres
1	12
2	5
3	7
4	9
5	4
6	11
7	9
8	11
9	6
10	13
11	21

0	4	6
Complete the dispersion graph below using the data for Sample 3 in Figure 9.		

| 0 | 4 | 7 | Suggest one way in which the data collection technique in Figure 9 could be |
| :--- | :--- | :--- | :--- | adapted to make the sample more reliable.

\qquad
\qquad

| 0 | 4 | 8 | Using the data in Figure 9 , calculate the interquartile range of the pebble size data. |
| :--- | :--- | :--- | :--- | Show your working in the space below.

\qquad
\qquad
\qquad
\qquad

0	4	9

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

