

Mark Scheme

Mock Set 2

Pearson Edexcel GCSE Mathematics (1MA1) Higher Tier (Non-Calculator) Paper 1H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Publications Code
All the material in this publication is copyright
© Pearson Education Ltd 2017

General marking guidance

These notes offer general guidance, but the specific notes for examiners appertaining to individual guestions take precedence.

- 1 All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first.
 - Where some judgement is required, mark schemes will provide the principles by which marks will be awarded; exemplification/indicative content will not be exhaustive. When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the response should be sent to review.
- All the marks on the mark scheme are designed to be awarded; mark schemes should be applied positively. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme. If there is a wrong answer (or no answer) indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

Questions where working is not required: In general, the correct answer should be given full marks. **Questions that specifically require working**: In general, candidates who do not show working on this type of question will get no marks – full details will be given in the mark scheme for each individual question.

3 Crossed out work

This should be marked **unless** the candidate has replaced it with an alternative response.

4 Choice of method

If there is a choice of methods shown, mark the method that leads to the answer given on the answer line.

If no answer appears on the answer line, mark both methods then award the lower number of marks.

5 Incorrect method

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review for your Team Leader to check.

6 Follow through marks

Follow through marks which involve a single stage calculation can be awarded without working as you can check the answer, but if ambiguous do not award.

Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

7 Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question or its context. (eg. an incorrectly cancelled fraction when the unsimplified fraction would gain full marks). It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect (eg. incorrect algebraic simplification).

8 Probability

Probability answers must be given as a fraction, percentage or decimal. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths).

Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.

If a probability answer is given on the answer line using both incorrect and correct notation, award the marks.

If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.

9 Linear equations

Unless indicated otherwise in the mark scheme, full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously identified in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded (embedded answers).

10 Range of answers

Unless otherwise stated, when an answer is given as a range (e.g 3.5 – 4.2) then this is inclusive of the end points (e.g 3.5, 4.2) and all numbers within the range.

Guidance on the use of abbreviations within this mark scheme

- **M** method mark awarded for a correct method or partial method
- **P** process mark awarded for a correct process as part of a problem solving question
- A accuracy mark (awarded after a correct method or process; if no method or process is seen then full marks for the question are implied but see individual mark schemes for more details)
- **C** communication mark
- **B** unconditional accuracy mark (no method needed)
- **oe** or equivalent
- cao correct answer only
- ft follow through (when appropriate as per mark scheme)
- **sc** special case
- **dep** dependent (on a previous mark)
- indep independent
- awrt answer which rounds to
- **isw** ignore subsequent working

Higher tier Paper 1H (Non-calculator): Mock (Set 2) Mark Scheme

Question	Working	Answer	Mark	Notes	
1		Ali 80	M1	starts with a first step, e.g. $280 \div (2+5) (=40)$	
		Beth 200	A1	cao	
2		71°	M1	finds an angle using parallel lines, e.g. <i>BEF</i> as 38° or <i>EAB</i> as <i>x</i> .	
			M1	shows a complete process to arrive at the required angle	
				could be evidenced by angles shown on the diagram	
			A1	1 cao	
			C1	<u>alternate</u> , <u>corresponding</u> or <u>allied (co-interior)</u> unambiguously given <u>and_appropriate</u> for their working	
			C1	for all other reasons given, e.g. <u>Angles</u> on a <u>straight line</u> add up to <u>180</u> , <u>Angles</u> in a <u>triangle</u> add up to <u>180</u> , Base <u>angles</u> of an <u>isosceles</u> triangle are <u>equal</u> and appropriate for their working	
3		3x + 1	P1	process to start to problem e.g. states perimeter algebraically, e.g. $2x + 3 + 5x - 2 + 5x + 3$	
			P1	(dep P1) continues process e.g. simplifies to $12x + 4$ or divides their linear expression (linked to perimeter) by 4	
			A1	cao	

Question	Working	Answer	Mark	Notes	
4		No with correct figures	P1	starts process e.g. starts to find volume by showing how to find a prism which is part of the shape, or shows how to find the complete cross-sectional area, e.g. $(1 \times 10 \times 10)$ or $(\frac{1}{2} \times 2 \times 5) + (1 \times 15)$ (= 20)	
			P1	(dep P1) complete process shown to find the vol of the pool (= 200 m ³)	
			P1	process to convert between litres and cm ³ , e.g. 1 cm ³ = 100 000 litres or 200 000 litres	
			A1	time taken, e.g. 40 000 sec, 666.66 minutes, 11.11 hours	
			C1	comparison with correct comparable figures used, e.g. 36 000 < 40 000, 600 < 666.66, or 11.11 (10 given)	
5 (a)		20	M1	for complete proportion statement, e.g. $12 \times 5 \div 3$ oe	
			A1	cao	
(b)i		statement	C1	e.g. work rate of each man is the same / does not change over time	
ii		statement	C1	e.g. if rate slower it takes longer / rate faster takes less time i.e. needs to refer to how the rate changes	
6 (a)		complete	B1	1/6, 5/6 shown on left hand branches,	
		tree diagram	B1	1/8, 7/8, 1/8, 7/8 shown on right hand branches	
(b)		$\frac{35}{48}$	M1	$\frac{5}{6} \times \frac{7}{8}$ oe (or ft their tree diagram, dep on having probabilities shown)	
			A1	oe (or ft tree diagram, dep on having probabilities shown)	

Question	n Working	Answer	Mark	Notes	
7 (a	n)	$n^2 + 2$	M1	begins to work with 2^{nd} differences (e.g. shown as 2) or $n^2 + k$ ($k \neq 2$)	
			A1	cao	
(t))	2502	B1	ft a quadratic expression	
8		$8\frac{4}{5}$	M1	writes as improper fractions, e.g. $\frac{11}{4}, \frac{16}{5}$	
			A1	for $8\frac{4}{5}$, $\frac{44}{5}$ oe	
9		5(3p+7q)	P1	for start to process, e.g. derivation of algebra using information,	
				e.g. $3p + 7q$ or 50 divided in the ratio 3: 7	
			P1	for process to find mass of 1 litre of R, e.g. $(3p + 7q) \div (3+7)$ or 15 : 35 oe	
			A1	oe	
10		21	P1	for start to process, e.g. use of a multiple of 1.1 or 110% oe or works with an area for A and increases by 10%	
			P1	for complete process, e.g. derivation of 121%, 1.21 oe or works with area of A and C to find percentage increase	
			A1	cao	

Question	Working	Answer	Mark	Notes	
11 (a)		Graph	B1	for at least 5 of the 6 points plotted consistently within each interval	
			B1	for a fully correct cumulative frequency graph	
(b)		37 to 39	M1 for showing a method to find 25% of 80 (= 20)		
			M1	for evidence of reading from the graph from 60 (dependent on having a cf graph)	
			A1	estimate in the range 37 to 39 (ft their cf graph)	
12		No	C1	for showing method to find total of all $(30 \times 14 \text{ or } 420)$	
			or for bags (18 \times 10 or 180) or using Mark's result 18 \times 10 + 12 \times 4		
		(supported)	C1 (dep C1) or showing method to find total for boxes, e.g. "420" – "180" (= 240)		
				or both totals using Mark's mean e.g. $18 \times 10 + 12 \times 4$ and 30×14	
			C1	for showing complete solution,	
				e.g. leading to $240 \div 12$ and 20 , or 420 and $180 + 48 = 228$	
13		Proof	M1	for a fully complete method as far as finding two correct decimals that, when subtracted, give a terminating decimal (or integer) and showing intention to subtract,	
			e.g. $9x = 3.9$		
			A1	correct working to conclusion	

Question	Working	Answer	Mark	Notes	
14 (a)		46 to 50	P1	for start to process e.g. evidence of using volume, e.g. $1490 \div \frac{4}{3} \pi r^3$ oe or use of	
				estimates	
			P1	complete process, e.g. number = $\frac{3 \times 1500}{4 \times 3 \times 2^3}$	
			A1	arrives at estimate, e.g. 46 to 50	
(b)		would be less	C1	e.g. most divisors have been made smaller	
15 (a)		300	B1	for correct use of indices rules, e.g. sight of 3 from $\sqrt[4]{27 \times 3}$ or sight of 10^2	
			B1	for 300, 3×10^2 oe	
(b)		$\frac{25}{9}$	M1	shows understanding of notation by working out one step, e.g. reciprocal or cube root (to both numbers).	
			A1	oe	
16		$t = \frac{1}{k-2}$ M1 isol		intention to multiply both sides by $t-3$ as the first step	
				isolate terms in t ie by moving t terms to one side of the equation, and everything else to the other side	
			M1	factorise for t (dep on having an expression that can factorise for t).	
			A1	oe	

Question	Working	Answer	Mark	Notes	
17 (a)		(x-y)(3x-	M1	identify $x - y$ as a common factor, e.g. $(x - y)(\dots)$ oe	
		3y-2)	A1		
(b)		$\frac{3x}{2x-5}$	M1	factorise $2x^2 + x - 15$ [= $(2x - 5)(x + 3)$] or $3x^2 + 9x$ [= $3x(x + 3)$]	
		2x-5	M1	$\frac{1}{(2x-5)(x+3)} \times \frac{3x(x+3)}{1}$	
				(2x-3)(x+3)	
			A1	cao	
18		$\sqrt{3}$	C1	first step shown towards simplifying, e.g. $\frac{4\sqrt{3}}{1+\sqrt{3}\sqrt{3}}$ simplifies denominator, e.g. $\frac{4\sqrt{3}}{1+3}$ conclusion to get result	
			C1		
			C1		
19		shows result	C1	shows expansion of the squares of any three consecutive numbers shown algebraically, e.g. $(4n^2 + 4n + 1)$ or $(4n^2 + 12n + 9)$ or $(4n^2 + 20n + 25)$	
			C1	simplifies, e.g. $12n^2 + 36n + 35$	
			C1	arrives at $12(n^2 + 3n + 2) + 11$ (oe) and concludes result	

Question	Working	Answer	Mark	Notes	
20		0.5	M1	writes \overrightarrow{CD} as $-\mathbf{a} + \mathbf{b}$ or \overrightarrow{MD} as $\frac{1}{2}(-\mathbf{a} + \mathbf{b})$ oe	
			M1	writes \overrightarrow{BM} as $\overrightarrow{BD} + \overrightarrow{DM}$ or $\mathbf{b} - \frac{1}{2}$ (" $-\mathbf{a} + \mathbf{b}$ ") or $\overrightarrow{BC} + \overrightarrow{CM}$ or $\mathbf{a} + \frac{1}{2}$ (" $-\mathbf{a} + \mathbf{b}$ ")	
				where " $-\mathbf{a} + \mathbf{b}$ " is ft their expression for \overrightarrow{CD} or $2 \times \overrightarrow{MD}$	
			A1	for stating k as 0.5, and supported by a vector method	
21		width = $1\frac{2}{3}$	P1	start to process e.g. establishes that $x^2 = xy + 66$	
		length = 9	P1	process to form equation in one variable, e.g. substitute in: e.g. $(3y + 4)^2 = y(3y + 4) + 66$ or $x^2 = 66 + (x(x - 4))/3$	
			P1	process to arrive at equation to be solved $3y^2 + 10y - 25 = 0$ or $x^2 + 2x - 99 = 0$ oe	
			P1	process to solve, e.g. $(3y-5)(y+5) = 0$ or $(x-9)(x+11) = 0$	
			P1	selection of $y = 5/3$ or $x = 9$ as only solution, and subs to find other variable	
			A1	$y \text{ (width)} = 1\frac{2}{3} \text{ (cm) and } x \text{ (length)} = 9 \text{ (cm)}$	
22		proof	C1	if YG is the height of AYB and XH are the same	is the height of AXB then YG=XH since the areas
			C1	XMH = GMY (opposite angles) or $XHM = YGM$ (both 90°)	identifies heights XH (= h) and GY (= H)
			C1	conclusion that triangles <i>MHX</i> and <i>YGM</i> are congruent	association of $\sin x = h/XM$ and $\sin x = H/YM$
			C1	conclusion and statement that XM	$\mathcal{I} = MY$